Intensified decadal variability in tropical climate during the late 19th century

Toby R. Ault, Julia E. Cole, Michael N. Evans, Heidi Barnett, Nerilie J. Abram, Alexander W. Tudhope, and Braddock K. Linsley

Received 5 December 2008; accepted 23 January 2009; published 21 April 2009.

[1] To evaluate and extend the record of decadal climate variability, we present a synthesis of 23 coral oxygen isotope records from the tropical Indo-Pacific that extends back to A.D. 1850. Principal components analysis (PCA) on detrended records reveals a leading pattern of variance with significant interannual (3–5 year) and decadal (9–14 year) variability. The temporal evolution and spatial pattern of this variability closely resembles the El Niño/Southern Oscillation (ENSO) pattern across both time scales, suggesting that this decadal tropical variability is fundamentally related to ENSO. The 19th century experienced stronger decadal tropical climate variability, compared to the 20th. Decadal variability in the tropical oceans thus remains underestimated by analysis of direct observations. Citation: Ault, T. R., J. E. Cole, M. N. Evans, H. Barnett, N. J. Abram, A. W. Tudhope, and B. K. Linsley (2009), Intensified decadal variability in tropical climate during the late 19th century, Geophys. Res. Lett., 36, L08602, doi:10.1029/2008GL036924.

1. Introduction

[2] In the tropical Pacific, unstable interactions between sea surface temperature (SST) and the atmosphere generate interannual (2–7 year) El Niño/Southern Oscillation (ENSO) climate anomalies with a characteristic spatial pattern. The Pacific also exhibits variability on decadal (8–14 year) [White et al., 2003; Tourre and White, 2006] to multidecadal (20–40 year) [Mantua et al., 1997; Garreaud and Battisti, 1999; Zhang et al., 1997] timescales with a similar pattern. Further evidence of decadal variability in the tropical Pacific appears in proxy climate data [Urban et al., 2000; Cobb et al., 2001; Holland et al., 2007].

[3] Previous work has proposed diverse physical mechanisms to explain low-frequency variability (see reviews by Latif [1998] and Mestas-Nuñez and Miller [2006]). These mechanisms include: physical transport of mid-latitude SST anomalies into the equatorial eastern Pacific [e.g., Gu and Philander, 1997; Luo and Yamagata, 2001]; wind-driven oceanic Rossby waves that reflect into the thermocline at the western boundary [White et al., 2003]; and autocorrelation arising from oceanic processes driven partly by ENSO variability [e.g., Newman et al., 2003; Power and Colman, 2006].

[4] Observational studies of Pacific decadal variability are complicated by the brevity of the instrumental record, which is sparse before the mid-20th century [Kaplan et al., 1998; Mestas-Nuñez and Miller, 2006] (Figure 1b), and by the potential for recent anthropogenic influence. To understand decadal variability more fully, we must turn to proxy data. Here we use a new network of 23 coral oxygen isotope (δ¹⁸O) records to describe the spectrum of tropical SST in greater detail.

2. Data

[5] Coral records closely track tropical Indo-Pacific variability on interannual to decadal timescales [Urban et al., 2000; Cobb et al., 2001; Linsley et al., 2008]. In warmer and/or lower salinity conditions (e.g., from precipitation or freshwater flux), corals incorporate less of the heavy isotope of oxygen (¹⁸O) into their skeletons, driving δ¹⁸O values lower. The inverse relationship between δ¹⁸O and both precipitation amount and SST in tropical locales allows SST reconstructions spanning several centuries (as summarized by Cole [2003] and Lough [2004]). On interannual timescales, researchers have demonstrated that large-scale patterns of tropical SST covariability (e.g., ENSO) can be reliably reconstructed from a limited number of records [Evans et al., 2002; Wilson et al., 2006]. On decadal timescales, low signal to noise ratios present greater challenges to pattern identification [Lough, 2004; Linsley et al., 2008], but analysis of a network of sites can expose common patterns. We use this coral network-based approach to identify large-scale patterns of decadal variability that emerge from proxy and instrumental records.

[6] We use 23 coral δ¹⁸O records from the Indian and Pacific Oceans in our synthesis (Table S1 of the auxiliary material), including only sites with ≥90% of the 1850–1990 interval to minimize non-stationarity. We converted each subannually-resolved time series into a yearly average using the May-April year to emphasize the seasonal expression of El Niño/La Niña conditions [Rasmussen and Carpenter, 1982]. We made no adjustments to existing annual records. Because many coral records have trends that do not unequivocally reflect climate [see Lough, 2004], we detrended all...
annualized records using a spline to remove ≥50% of the variance at periods ≥100 years. Detrending did not alter the spectrum of any individual record at the timescales discussed here. We performed a parallel analysis on instrumental SST anomalies for 1901–1990 in the Pacific and Indian Oceans (5 × 5 resolution) and on an index of central Pacific SST anomalies (NINO3.4) [Kaplan et al., 1998], using the same May-April year.

3. Methods

[7] To assess network-wide patterns of spatiotemporal variability, we performed principal component analysis (PCA) on the annualized, detrended δ¹⁸O time series using the correlation matrix. We apply the same analysis to instrumental SST records from the location of each coral record. We determined the spatial expression of each principal component time series (PC) by correlating it with each of the annualized, detrended coral records and with the gridded SST dataset. We established confidence limits for the leading eigenmodes using a Monte Carlo (rule N) significance test [Preisendorfer et al., 1988] modified for autocorrelation.

[8] To detect patterns of low-frequency variability in the leading principal component (PC1) and in individual δ¹⁸O records, we applied two complementary methods of spectral analysis: the multi-taper method (MTM) [Thomson, 1982] and singular spectrum analysis (SSA) [Ghil et al., 2002]. We used a Monte Carlo approach to test the significance of each signal identified by MTM and SSA against a red-noise null hypothesis [Ghil et al., 2002].

[9] We applied SSA to PC1 and identified significant decadal variability. Next we used SSA to extract decadal (8–15 year) components, where present, from each of the δ¹⁸O and SST series. Finally, we correlated the decadal δ¹⁸O and SST fields with the decadal component derived from the PCA. To assess the significance of correlations between reconstructed decadal components from SSA, we estimate the effective degrees of freedom by 2*N/M, where N is the length of the time series and M is the SSA window length, which yields 19 effective degrees of freedom in the filtered coral records and 12 degrees of freedom in the filtered SST records. Effective degrees of freedom for non-zero lags are estimated by N/M (9.4 for δ¹⁸O, 6 for SST). The 95% confidence limits obtained using this approach were slightly more conservative than those derived from a Monte Carlo approach.

4. Results

[10] Results of PCA are shown in Figure 1. PC1 correlates significantly with the NINO3.4 index ($r = -0.71; p < 0.001$). Spatially, PC1 correlates with annual SST anomalies in approximately the canonical ENSO pattern. Individual coral records correlate with PC1 according to their location with respect to the canonical ENSO pattern (Figure 1c).
variability in PC1 (Figure S1). Monte Carlo SSA (Table 1) identifies a significant decadal (9–14 yr) component that explains 36\% of the variance in PC1 (Figure 2). Seasonal analysis of the high-resolution records (Figure S3) identifies the boreal winter and fall (SON and DJF) as the times of greatest amplitude in this signal. PCA performed on the SST records from the individual coral sites reveals this same signal (results not shown).

The decadal component appears stronger from 1850–1920 than from 1920–1990. To test this observation, we partitioned PC1 into two time series of near-equal length (1850–1920 and 1921–1990) and applied SSA to each interval. From 1850–1920 the decadal signal is significant at the 95\% confidence level and explains 51\% of the variance; after 1920, it explains 11\% of the variance and is not significant (Table 1). Singular values corresponding to the decadal components are larger during the earlier interval (Table 1), meaning that the absolute strength of the signal is greater from 1850–1920 than from 1921–1990. Wavelet analysis of PC1 and other long ENSO indices (e.g., the SOI) confirms that the earlier interval experiences enhanced decadal variability (Figure S2).

Decadal components from 11 out of 23 sites correlate significantly ($P_{adj} < 0.05$) with the PC1 decadal signal (Figure 2d and Table S1). Positive correlations occur in the equatorial Pacific and Indian Ocean; negative values occur primarily in the south Pacific, Indonesia, and eastern Indian Ocean. The decadal component from PC1 correlates negatively with decadal SST from much of the tropical Indo-Pacific, and positively with decadal SST from the extra-tropical Pacific (Figure 2d, colors). Overall, the spatial pattern of correlation with PC1 is similar for both SST and $\delta^{18}O$ records, across interannual and decadal time scales. However, the decadal pattern is displaced to the west of the canonical ENSO pattern and lacks power in the eastern equatorial and subtropical Pacific. We do not find evidence for propagation of decadal

<table>
<thead>
<tr>
<th>Time Series (and Interval)</th>
<th>Signal (and RC Rank)</th>
<th>Timescale</th>
<th>Variance (Singular Value/M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1 (1850–1990)</td>
<td>Decadal (1–2)**</td>
<td>9–13yr</td>
<td>35.9% (0.22)</td>
</tr>
<tr>
<td></td>
<td>ENSO (3–4)**</td>
<td>5–6yr</td>
<td>20.97% (0.17)</td>
</tr>
<tr>
<td>PC1 (1850–1920)</td>
<td>Decadal (1–2)**</td>
<td>9–10yr</td>
<td>51.2% (0.26)</td>
</tr>
<tr>
<td></td>
<td>ENSO (5–6)</td>
<td>3–6yr</td>
<td>9.42% (0.11)</td>
</tr>
<tr>
<td>PC1 (1921–1990)</td>
<td>Decadal (3–4)</td>
<td>~14yr</td>
<td>10.9% (0.08)</td>
</tr>
<tr>
<td></td>
<td>ENSO (1–2)**</td>
<td>5–6yr</td>
<td>31.5% (0.27)</td>
</tr>
<tr>
<td>NINO3.4 (1857–1990)</td>
<td>ENSO (1–4, 7–8)**</td>
<td>3–6yr</td>
<td>36.28% (0.26)</td>
</tr>
<tr>
<td></td>
<td>Decadal (5–6)**</td>
<td>9–12yr</td>
<td>10.97% (0.11)</td>
</tr>
</tbody>
</table>

aTotal fraction of variance explained by each RC and its corresponding singular value (in parentheses) normalized by the window length (M).
5. Discussion

[15] We show that the 9–14 year signal in corals is highly significant during the 19th century and is present (weakly) during the 20th. We therefore argue that tropical decadal variability is more important than inferred from 20th century instrumental records alone. The spatial and temporal similarities of the decadal signal to the 2–7 year ENSO component suggest that the physical mechanisms may also be similar.

[16] Comparing decadal statistics of PC1 with the NINO3.4 index highlights an important contrast between our results and instrumental estimates of tropical decadal variability. Overall, decadal variability only accounts for 11% of the total variance in the NINO3.4 SST series whereas in PC1 from the coral network, it makes up 36% of the total variance. This discrepancy likely reflects the importance of the decadal component over time and is not a bias of the geographic distribution of corals, as the network of SST records also exhibit this pattern with an enhanced (albeit slightly) decadal component during the late 19th century.

[17] We interpret the enhanced decadal variability seen in the coral network and the NINO3.4 region as evidence of greater ENSO-like tropical decadal variability during the late 19th century, when instrumental data are sparse. Further support comes from the Maiana Atoll [Urban et al., 2000] and Jarvis Island records, which are located within the NINO3.4 region and show a clear intensification of decadal variability during the late 19th century. The strong DJF seasonality, spatial pattern, and correlation field with SST all support this interpretation. Finally, additive contributions of SST and salinity to coral δ^{18}O records could reinforce the decadal signal in corals when it was more energetic further back in time [Cole et al., 1993; Guilderson and Schrag, 1999; Urban et al., 2000; Linsley et al., 2008].

[18] Any physical mechanism used to explain enhanced variance in the decadal pattern during the late 19th century must also explain the boreal winter enhancement, the roughly simultaneous evolution of the spatial pattern of SST anomalies, and the time-varying amplitude. We argue that solar forcing is unlikely to drive this decadal variability, because of the near-180° phase reversal between sunspot maxima and the decadal signal over the course of our record (Figure S4). Between 1850 and 1900, sunspot number (SSN) maxima are approximately 180° out of phase with El Niño-like conditions in the network of corals, whereas at the end of the 20th century SSN maxima are in phase with El Niño-like conditions.

[19] Could random changes in the tropical Pacific ocean-atmosphere system, combined with memory in the ocean mixed layer [e.g., Power and Colman, 2006; Newman et al., 2003] produce decadal ENSO-like variability? To test this null hypothesis, we use a stochastic linear model [Newman et al., 2003] to realize 1000 Monte Carlo time series with the same autocorrelative properties and relationship with ENSO as our PC1. The spectra of these realizations (Figure 3) suggest that we cannot rule out this null hypothesis of
Acknowledgments.

N. J. Abram, British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK.

T. R. Ault, Barnett, J. E. Cole, and M. N. Evans, Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, AZ 85721, USA. (tault@geo.arizona.edu)

B. K. Linsley, Department of Earth and Atmospheric Sciences, State University of New York at Albany, 1400 Washington Avenue, Albany, NY 12222, USA.

A. W. Tudhope, School of GeoSciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW, UK.